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AbIanc:t-The natural frequencies and mode shapes of a clamped circular plate with rectilinear
orthotropy are determined by a modified application of the interior collocation method. In this
version of the collocation method, the number of collocation stations is &realcr than the number
of approximation functions. A least-squares error fit is then used to aenerate the loveming
eilenvalue problem. Overcollocation has the benefit of minimiziDa the effect of poor choice of
collocation stations to allow for better results consistent with the number and quality of ap
proximation functions employed. Parametric studies are presented to illustrate the effect of
orthotropy on the natural vibration data of the clamped circular plate.

INTRODUCTION

In the natural vibration analysis of thin plates, exact solutions occur only for a handful
of cases with simple plan forms, amenable boundary conditions and extensional and
flexural stiffnesses that appear to be at most orthotropic. For all other cases, approx
imate analysis methods are employed. The.finite element method is acknowledged as
the most versatile of these methods. Natural frequencies and mode shapes of a finite
element model can be extracted by very efficient eigensolution schemes even for large
algebraic eigensystems. The more important approximate analysis techniques ante
cedent to finite elements include Rayleigh-Ritz, Galerkin and collocation methods.
These methods because of various limitations are appropriate for particular problems
only. However, whenever they can be used, there is a decided advantqe in them over
finite elements because substantially less computational effort is required. For data on
the vibration of plates, the reader is referred to Leissa[1-6] and Bert[7-10J, whose
comprehensive bibliographies are invaluable reference sources.

Herein, a natural vibration analysis is given for a clamped circular plate with
rectilinear orthotropy. A superficial examination of the problem details wiD immediately
reveal the formidable if not insurmountable difficulties in constructing a closed-form
exact solution. Lekhnitskii[ll] gave a Rayleigh quotient estimate of the fundamental
frequency using the approximate transverse displacement w(x, y, t) as

(1)

with A and a as the undetermined amplitude and plate radius, respectively. The Rayleigh
quotient frequency has the form

(2)

where p and h are the plate density and thickness, respectively, and D u , Dn , D 1Z and
D66 are the flexural stiffnesses. These stiffnesses are given by
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where Ex, Ey, Vxy , Vyx and G are the orthotropic elastic constants of the material.
Rajappa[12] in a short note proposed a solution of this problem by Galerkin's method.
However, in carrying out the analysis, he considered an approximate displacement
pattern that was a function of the radial coordinate only; i.e. it was independent of the
circumferential dependence and thus omitted the coupling with the nonaxisymmetric
terms. Thus, his frequency turned out to be exactly the same as that given by eqn (2).
A large deflection analysis, which includes transverse shear and rotatory inertia, was
presented by Sathymoorthy and Chia[13], who also used Galerkin's method with a one
mode approximation, the spatial dependence of which had the same form as eqn (I).
More recently, Luisoni and Laura[]4] presented three separate Rayleigh-Ritz analyses
to calculate the lowest five frequencies. Two admissible coordinate functions were
used to obtain the two so-called axisymmetric modes (no nodal diameter); two coor
dinate functions for two modes with one nodal diameter and one coordinate function
for a mode with two nodal diameters. Since this analysis also does not consider the
coupling of the various coordinate functions corresponding to different circumferential
mode numbers, the range of applicability will be limited to material properties that
have only slight departures from isotropy. The effort in calculating the strain energy
integrals even for only two coordinate functions per analysis appears to be quite sub
stantial.

An interior collocation method is employed in our analysis. Interior collocation
should be distinguished from boundary collocation, the application of which to plates
was popularized by Conway and Leissa[]5, ]6). In interior collocation, an approxi
mation sequence of functions is adopted on the basis that it meets the boundary con
ditions, and point matching of the governing equations in the interior is carried out to
generate the matrix eigenvalue problem. These roles are reversed in boundary collo
cation. This version of interior collocation also differs from its customary application
in that overcollocation (i.e. more collocation points than the number of approximation
functions) is used toghether with a least-squares error fit. Aside from illustrating the
vibrational behavior of such plates, an important purpose of this study is to demonstrate
the improvements that are possible with overcollocation. One advantage of collocation
over the Rayleigh-Ritz or Galerkin method is that no integrals need to be evaluated,
and therefore it is extremely simple to implement the analysis. It is mentioned that the
use of a least-squares error fit with boundary collocation was demonstrated on a prob
lem of stress analysis of a plate with single and/or clustered nozzles by Hurlbert et
al.[17).

In the next section, the least-squares interior collocation method is presented.
Then, the details of the application to clamped circular plates with rectilinear orthotropy
are elaborated. Numerical examples are given to illustrate the variation of the fre
quencies with parameterization of the material properties.

LEAST-SQUARES COLLOCATION

Let the governing equation of a boundary value problem for natural vibration
analysis be given by

D{w(x)} = w2M{w(x)}, (4)

where D{ } and M{ } are the structural and inertial operators, respectively, and x
denotes the independent spatial variables, the number of which depends on the math
ematical dimensionality of the problem. In the interior collocation, a solution set of N
approximation functions is chosen, i.e.

N

w(x) = ~ A; W;(x) ,
i-I

(5)

where each Wj(x) meets the boundary conditions but not necessarily governing equation
(4). In the usual application of the interior collocation, it is insisted that the solution
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set of N functions satisfy governing equation (4) a.t N interior stations. Let Xi (i = I,
2, ... , N) denote these stations. Then solution form (5) substituted into governing
equation (4) and evaluated at these collocation points yields

N N

~ AjD{Wix;)} - w2 ~ AjM{Wj(x;)} = 0,
j-I j-I

Using the notation

i = 1,2, ... , N. (6)

(7)

eqn (6) can be represented by

[K]{A} - w2 [M]{A} = O. (8)

In algebraic eigenvalue problem (8), [KJ and [MJ are not necessarily symmetric, which
is a major mathematical difference from the Rayleigh-Ritz and Galerkin methods. The
solution to (8) provides a set of N 2 frequencies, wl values and the right eigenvectors,
which represent the synthesis of the modal patterns from the N generalized coordinate
Ai values.

The accuracy of this method as well as other approximate methods is obviously
tied to the number and quality of approximation functions used, and there is no need
for further elaboration at this point. In the collocation method, the locations of the
stations are left to the analyst, and there are no prescribed rules for their choice. Two
analysts with distinct sets of locations will arrive at different results. Moreover, there
is an inherent possibility for "poor" choices of collocation points. A way to overcome
this possible deficiency is to use more stations than the number of approximation func
tions. The enforcement of governing equation (4) at more stations leads to an over
determined system of equations. The associated matrix form of the collocation equa
tions is rectangular rather than square. This overdetermined system may be solved in
terms of a least-squares error fit.

To outline this version of the collocation method, let N denote the number of
approximation functions and let R denote the number of collocation stations, with R
> N. The introduction of these N functions at the R stations can be interpreted as
leaving an error at each collocation point, i.e.

N N

~ AjD{Wj(Xi)} - w2 ~ AjM{Wixi)} = £i,
j- J j-I

or in matrix form

[K]{A} - w2[M]{A} = {E}.

The sum of the square of the pointwise errors is given by

; = 1,2, ... ,R (9)

(10)

where

[KSJ = [KV[KJ, [MSJ = [MV[MJ

[KM] = ~ [[K] T[M] + [M] T[K] ].

Minimization of £2 with respect to {A} gives

dE2

o{A} = [KS]{A} - 2w2 [KM]{A} + w4 [MS]{A} = O.

(12)

(13)



51t! S. B. DONG and A. E. LOPEZ

This quadratic eigenvalue problem can be reduced to a first-order system with the
following transformation:

{B} = w~{A}.

Inserting (14) into (13) yields:

[KS]{A} - 2[KM]{B} + w2[MS]{B} = O.

( 14)

(15)

Equations (14) and (15) can be combined into the following equation, whose dimen
sionality is double that of the original system:

[ 0 [I]] [iA}] _ 2 [[I] 0] [iA}]
- [KS] 2[KM] {B} - w 0 [MS] {B}' (16)

The solution to (16) should consist of duplicate sets of squared frequencies and their
modal combinations of the generalized coordinates, because of the "perfect square"
nature of eqn (13). In numerical applications, however, there may not be this duplicity,
but rather complex conjugate pairs of solutions. This is due to the fact that the ap
proximation functions are not exact solutions, and there may be slight deficiencies in
numerical precision in forming the algebraic system. In all of the examples observed
by the authors to date, the imaginary parts of the complex conjugate pairs are very
much smaller than the real parts and may be regarded as numerically spurious. The
real parts of the solutions approximate the true eigendata very closely for those ex
amples where comparisons with known data are available.

One additional comment can be made. Note that it is possible to introduce a weight
ing matrix [W] into the least-squares expression (11), i.e.

(17)

This would be useful if there were a priori information concerning the veracity of certain
collocation points. In this article, however, this particular aspect will not be taken up.

PLATE ANALYSIS

To investigate the natural vibrations of a rectilinear orthotropic clamped circular
plate of radius a and thickness h, first establish a rectangular Cartesian coordinate
system with the origin at the plate's center and let the X-, y-axes run parallel to the
natural elastic axes of the material. The governing equation in this coordinate system
has the form

In interior collocation, eqn (18) must be enforced at all the selected stations within the
plate. To accommodate the clamped boundary conditions on the plate's circular pe
rimeter, it is more convenient to use approximation functions given in polar coordinates.
Hence, the differential operators appearing in (18) should be similarly expressed, i.e.
by transformation [x, y = r cos(9), r sin(O)]. The alsebraic details of this transformation
are straightforward, and the expressions for W,.u.u, W,.uyy, and W,yyyy in terms of, and
oare given in the Appendix.

Owing to twofold structural symmetry, collocation within one-quarter of the plate
is sufficient, but four separate cases according to symmetry and antisymmetry con
ditions about the x- and y-axes must be considered to completely explore the modal
behavior. These cases are outlined in Table I. The forms of the approximation functions
can be grouped into two sets depending upon symmetry or antisymmetry conditions
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Table J. Summary of the parameters for the approximation functions

x-y symmetry/
antisymmetry Solution cos (na)

Case conditions form eqn sin (na) Wm (r) Eqn for ~ (r)

x sym (19) n = 0 m = I, 3,.5, ... (23)
y sym /I = 2.4,6,8, ... In = 1,2,3, ... (24)

2 x sym (19) n = J m = 2,4,6•... (23)
yanti n = 3,5,7.9, ... m = J, 2. 3, ... (24)

3 x anti (20) n = 2,4,6.8, ... m = 1.2.3•... (24)yanti

4 x anti (20) n = J m = 2.4,6, ... (23)
y sym n = 3.5,7,9•... m = J, 2. 3, ... (24)

about the x-axis. They are

w(r, 0) = ~ ~ A mn Wm(r) cos (nO)
n m

and

w(r,O} = ~ ~ Amn Wm(r} sin (nO)
n m

(symmetry)

(antisymmetry),

(19)

(20)

where Amn values are the generalized coordinates. For all cases, the radial functions
Wm(r} are the beam vibration eigenfunctions with both ends clamped, Le.

o< ~ < 1. (21)

The coefficients r3m and Q mmay be found in Young and Felgar[18]. They are also
recorded in the Appendix for convenience. The radial functions Wm(r) must meet cer
tain conditions at the center of the plate, and these conditions depend on the circum
ferential mode number n. Moreover, they dictate the form of the relation between
variable ~ in (21) and the radial coordinate r. These conditions on the displacement at
r = 0 (see [19]) are

n = 0,

n = I,

n ~ 2,

w = 0 and w" = 0

w = 0 and w" = 0

w = w" = o.
(22)

For Wm(r) to abide by conditions (22), it is necessary that ~ have one ofthe two following
forms, according to the value of n:

l:=~
'" 20'

r
~ = -,

o

for n = 0 and n = I

for n ~ 2.

(23)

(24)

In Table 1, the appropriate approximation functions for each of the four cases of sym
metry/antisymmetry conditions are summarized. For given values of n., the appropriate
values of m and the corresponding form for ~ are indicated. It is of interest to note that
Case (4) may be obtained from Case (2) by interchanging the roles of D 11 and D22 in
governing equation (18).

Collocation simply requires the substitution of eqn (19) or (20) into governing
equation (18) expressed in terms of polar coordinates using the proper set of approx
imation functions as set forth in Table 1.
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DISCUSSION OF LEAST-SQUARES COLLOCATION

A very abbreviated evaluation of least-squares collocation was conducted. The
axisymmetric vibration of an isotropic plate was considered. In this example, com
parisons were made on the usage of both three and four approximation functions with
customary collocation and overcollocation. Table 2 summarizes the results in which
the number of evenly spaced collocation stations was systematically increased. In all
cases, overcollocation results were closer to the exact solution, albeit only slightly for
this example. The accuracy of collocation results, like that of all other approximate
analysis techniques, depends on the number and the quality of the approximation func
tions used, which, for this example, was evidently very good with only the leading
approximation function. Therefore, the improvement by overcollocation is only nom
inal.

Table 3 contains the axisymmetric vibration results for the isotropic plate in which
the number of collocation stations is equal to or one greater than the number of ap-

Table 2. Comparison of axisymmetric frequency for
isotropic plate

N : 3 N = 4

R K2 % diff. K2 o/c diff.

3 105.010 0.62
4 104.706 0.33 103.977 -0.39
5 104.786 0.41 104.421 0.06
6 104.609 0.24 104.536 0.17
7 104.626 0.25 104.617 0.24
8 104.572 0.20 104.630 0.26
9 104.734 0.35

10 104.142 - 0.21

R. number of evenly spaced collocation poinb;
N. number of approximation functions: w. K (l/a2 j(D/
ph)l/2 with K~"<l = 104.363.

Table 3. Frequencies for axisymmetric vibration with randomly selected
collocation stations

Randomly selected
collocation points

N R* (r) K2 % diff.

0.10. 0.20. 0.30 99.106 -5.09
0.40. 0.50. 0.60 105.765 1.34

3 0.05. 0.10. 0.15 68.801 - 34.08
0.10. 0.20. 0.90 131.88 26.37
0.70. 0.80. 0.90 -164.59 +

3
0.10. 0.20. 0.30. 0.40 99.435 -4.72
0.50. 0.60. 0.70. 0.80 88.385 - 15.31
0.30. 0.40, 0.50, 0.60 103.105 - 1.21

4 0.05.0.10. 0.15. 0.20 98.433 -5.68
0.40. 0.45. 0.50. 0.55 104.075 -0.28
0.85.0.90.0.95.0.99 -166.87 +

0.20. 0.40. 0.60. 0.62 102.989 - 1.32
0.10. 0.20, 0.30. 0.40 101.186 - 3.04

4 0.60. 0.70, 0.80. 0.90 -175.81 t
0.40, 0.45, 0.50. 0.60 101.332 -2.90
0.05, 0.10, 0.90, 0.95 76.727 -26.48

4
0.10,0.20,0.30,0.40.0.50 101.891 -2.67
0.30,0.40,0.50.0.60.0.70 101.493 -2.27

5 0.50. 0.60, 0.70, 0.80. 0.90 -117.741 t
0.14. 0.17. 0.50, 0.67. 0.84 110.219 5.61

N, number of approximation functions; R·. number of random collocation sta-
tions; w. KO/a2)(D/ph)lfl with K~ml = 104.363.
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proximation functions. However, the stations,were randomly chosen and are not evenly
spaced as before. Poor choices of collocation stations led to results that differ signif
icantly from the exact solution and in certain instances to physically absurd negative
squared frequencies. From this example, the obvious recommendation is that evenly
spaced stations should be used with collocation. This method for selecting collocation
stations was followed in all subsequent examples.

KEVLAR PLATE

As an illustration of a contemporary material, consider a plate made from an aramid
cloth-reinforced epoxy composite. The material properties used in this analysis are

Ex :: Ey :: 4 x 103 ksi

G = 0.5 X 103 ksi

\I = 0.14.

(27.579 X 109 N/m2 )

(3.447 x 109 N/m2 ) (25)

These properties are representative of an actual material fabricated from Kevlar, and
for convenience in our discussion, it will be referred to as a "Kevlar plate." The weak
shear modulus and relatively low Poisson's ratio characterizing Kevlar should allow
the plate to behave as if it were composed of an orthogonal grillage of beams. The
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Table 4. Frequencies for Kevlar plate

K

M sym/sym sym/anti anti/anti

1 9.4396 19.549 30.368
2 33.433 46.210 63.922
3 35.522 55.465 73.356
4 62.556 88.838 106.50
5 79.491 102.79 132.84

Functions used: sym/sym n = 0 with m = 1, 3, n = 2, 4 with
m = 1, 2, 3; sym/anti n = 1 with m =< 2,4, n = 3,5 with m =
I, 2, 3, 4; anti/anti n =< 2, 4, 6 with m = 1, 2, 3, 4. w, KO/a2 )

(D]]/ph)1I2.

y
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Fig. 2. Frequencies with symmetriclantisymmetric CQnditions.



Table 5. Comparison of lowest symmetric/symmetric frequencies

Log (D22 /D II J Z
~
c:

-1.00 -0.50 0.0 0.5 1.0 \.5
..,
~

Log [(D 12 <
+ 2D(6 )/DII I Present Eqn (2) Present Eqn (2) Present Eqn (2) Present Eqn (2) Present Eqn (2) Present Eqn (2) 0=

~

-1.00 6.7066 6.8372 7.3750 7.4439 9.0418 9.1000 12.929 13.017 20.756 21.058 35.263 36.192
g~

:s
-0.75 6.8644 6.9876 7.5136 7.5822 9.1550 9.2135 13.009 13.097 20.809 21.107 35.295 36.220 '"

0
-0.50 7.1333 7.2473 7.7535 7.8222 9.3528 9.4120 13.149 13.237 20.901 21.195 35.353 36.271

...,
n

-0.25 7.5822 7.6875 8.1624 8.2317 9.6942 9.7550 13.394 13.483 21.062 21.349 35.455 36.362 ;-
0.0 8.3127 8.4136 8.8410 8.9136 10.272 10.337 13.818 13.910 21.347 21.621 35.627 36.522 3

'1:l

0.25 9.4647 9.5697 9.9308 10.012 11.226 11.298 14.544 14.638 21.839 22.097 35.948 36.806 ..
Q.

0.50 11.218 11.338 11.615 11.714 12.745 12.830 15.748 15.851 22.680 22.918 36.512 37.305 n::;.
0.75 13.791 13.939 14.115 14.246 15.066 15.177 17.685 17.804 24.087 24.310 37.465 38.176 n

c:
1.00 17.451 17.641 17.706 17.885 18.479 18.635 20.680 20.830 26.385 26.606 37.567 39.677 ~

1.25 21.926 22.784 22.688 22.958 23.339 23.562 23.992 25.334 29.719 30.262 41.\01 42.216
..,

'1:l

1.50 28.675 29.813 28.731 29.958 29.182 30.412 30.036 31.804 34.928 35.854 43.530 46.388 ~

1.75 37.823 39.322 38.071 39.432 38.050 39.778 40.487 40.853 43.398 44.079 50.378 53.003 "2.00 50.527 52.109 50.547 52.192 50.560 52.454 50.831 53.273 54.021 55.786 61.180 63.075

V.
t->
<..>
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factor K in the frequency formula

w = (26)

is shown in Table 4 for the three classifications of symmetry/antisymmetry conditions.
The numbers of approximation functions are also shown in Table 4. It is of interest to
note that the lowest isotropic plate modes are for n = 0, I, 2. Because of the lower
shear modulus and cross-elasticity coupling, the comparisons of K show the Kelvar
plate frequencies to be lower than those for the corresponding isotropic plate, i.e.
n = 0, 10.216 vs. 9.4396; n = 1,21.26 vs. 19.549; n = 2,34.88 vs. 30.368 (see [I, p. 8]
for the isotropic plate results). A comparison for the higher modes is more difficult
since the Kelvar results may not have corresponding isotropic plate modal patterns.
The higher modes for the Kevlar plate involve coupling of all circumferential modes.
which is not the situation for the isotropic plate.

PARAMETRIC STUDY OF ORTHOTROPY

The frequency in the form of the factor K in frequency formula (26) is plotted in
Figs 1-3 for the lowest modes for each of the three symmetry/antisymmetry conditions.
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Fig. 3. Frequencies with antisymmetric!antisymmetric conditions.
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In these plots, the two axes are the values of Dn/DIr and (D t2 + Wft6)/D It taken
logarithmically. For each case, the lowest three radial modes are combined with the
lowest six circumferential modes to form the set of approximation functions. Sufficient
collocation stations were used to ensure convergence of the results consistent with the
number of approximation functions. The plots show the quantitative variation of the
factor K with increasing stiffness ratios Dn/D II and (D J2 + W ft6 )/D II •

It is of interest to compare the present results for the lowest symmetric/symmetric
mode with the Rayleigh quotient (2) given by Lekhnitskii[1l]. Table 5 contains this
comparison for selected values ofD22/D li as a function of (D12 + 2DM )/D II , with these
ratios tabulated logarithmically. As can be seen, formula (2) is indeed very reliable
unless the ratios of the orthotropic properties become excessive.

CONCLUDING REMARKS

A method of least-squares collocation was presented herein and demonstrated for
the problem of the vibrations of a clamped circular plate with rectilinear orthotropy.
Least-squares collocation has the advantage of ensuring the best possible results con
sistent with the number and quality of the set of approximation functions used. In
applying least-squares collocation, an evenly spaced system ofcollocation points should
be used. This selection method ofcollocation points may be interpreted as a trapezoidal
rule of summation of the least-squares error over the domain of consideration. The
method is extremely simple to implement, which is a decided advantage over the Ray
leigh-Ritz and Galerkin methods where energy or error integrals must be evaluated
analytically before numerical analysis. However, collocation does not provide an upper
bound as in Rayleigh-Ritz. If physically good and mathematically complete approxi
mation functions are used, then the results should be reasonably close to their true
values.

The problem of the rectilinear orthotropic clamped circular plate illustrated the
case of application of least-squares collocation. This problem is ideally suited to col
location, and collocation is more efficient in terms of computational effort (and hence
cost) than finite elements. The effect of orthotropy was fully investigated over a wide
range of material properties, and these results are shown in graphical form for the
lowest modes of vibration for three cases of symmetry/antisymmetry conditions on the
two radial edges of one-quarter of the circular plate.

REFERENCES

I. A. W. Leissa. Vibration ofPlates, NASA SP 160. U.S. Government Printing Office. Washington, D.C.
(1969).

2. A. W. Leissa. Recent research in plate vibrations: classical theory. Shock Vibration Digest 9, 13-24
(1977).

3. A. W. Leissa. Recent research in plate vibrations, 1973-1976: complicating effects. Shock Vibration
Digest 10, 21-35 (1978).

4. A. W. Leissa, Plate vibration research, 1976-1980: classical theory. Shock Vibration Digest 13, 11-22
(1981).

5. A. W. Leissa, Plate vibration research, 1976-1980: complicating effects. Shock Vibration Digest 13, 19
36 (1981).

6. A. W. Leissa, Advances in vibration, buckling and postbuckling studies in composite plates. In Composite
Structures (Edited by I. H. Marshall), pp. 312-334. Applied Science Publishers Ltd, Essex (1981).

7. C. W. Bert, Dynamics of composite and sandwich panels-parts I and II. Shock Vibration Digest 8,37
48, 15-24 (1976).

8. C. W. Bert, Recent research in composite and sandwich plate dynamics. Shock Vibration Digest 11, 13
23 (1979).

9. C. W. Bert, Vibration ofcomposite structures. In Recent Advances in Structural Dynamics. Vol. 2 (Edited
by M. Petyl), pp. 693-712, Southampton, England (1980).

10. C. W. Bert, Research on dynamics ofcomposite and sandwich plates, 1979-1981. Shock Vibration Digest
14, 17-34 (1982).

II. S. G. Lekhnitskii, Anisotropic Plates (in Russian), GIITL, p. 375 (1957) [also available in English
Gordon and Breach, New York (1967»).

12. N. R. RJijappa, Free vibration ofreetalliUlar and circular orthotropic plates. AIM J. I, 1194-1195 (1963).
13. M. Sathymoorthy and C. Y. Chia, Nonlinear vibration of orthotropic circular plates including transverse

shear and rotatory inertia. In Modern Developments in Composite Materials and Structures, pp. 357
372. ASME Publication (1979).



526 S. B. DONG and A. E. LOPEZ

14. L. E. Luisoni and P. A. A. Laura, Vibrations of rectangularly orthotropic circular plates with edges
elastically restrained against rotation. Fibre Sci. Technol. IS, I-II (1981).

IS. H. D. Conway and A. W. Leissa, A method for investigating buckling loads of plates and certain other
eigenvalue problems. J. Appl. Mech. '1.7, 557-558 (1960).

16. A. W. Leissa, A method for analyzing the vibrations of plates. J. Aero. Studies 19,475 (1962).
17. L. E. Hurlbert, A. T. Hopper and E. F. Pybicki, The stress analysis of plates with sin&le and clustered

nozzles by the boundary point least square method. J. Engng Indust. Trans. ASME93B, 929-934 (1971).
18. D. Young and R. P. Felgar, Jr., Tables of Characteristic Functions Representing Normal Modes of

Vibration of a Beam. Engr. Research Series No. 44, The University of Texas (949).
19. G. Greenbaum, Comments on 'Numerical analysis of unsymmetrical bending of sheUs.' AlItA J. '1., 590

591 (1964).

APPENDIX

The operators W,LtLt, w,.uyy, W,yyyy in terms of r and 8 are tabulated below. Each operator i5 given by the
column of trigonometric coefficients multiplying the polar coordinate derivative on the left.

w •.u.u Wuzyy W,yyyy

W,"" c· S2 C2 s·
,-I W ,,." 6S2C2 s· - 4S2C2 + c· 6S2C2
,-2""",. 3S2(52 - 4c2) - 2s· + 11 S2C2 - 2c· 3c2(C2 - 4s2)
,-3w" - 3s2(S2 - 4c2) 2s· - 11 52C2 + 2c· - 3c2(C2 - 4s2)
,-IW ,"r1t 4sc3 2sc(c2 - 52) 4s3c
,-2W"re 12sc(c2 - S2) 12SC(52 - e2) 12sc(c2 - 52)
r- 2w,rree 6S2C2 s· - 4S2C2 + c· 6S2C2

r- 3w'rll 85C(4S2 - 3c2) 28se(e2 - S2) 8sc(3s2 - 4c2)
r- 3 W•rlle 6S2(52 - 4c2)' - 45· + 22s2e2 - 4c. 6c2

(C2 - 452)
r- 3W'rll88 -4s3c 2SC(S2 - c2) 45C3

'-·W'8 24sc(c2 - S2) 24sc(S2 - e2) 24se(e2 - S2)
'-·W,8. 4s2(9c2 - 252) 6s· - 32s2C2 + 6c. 4c2(9s2 - 2c2)
,-4W ,... IOs3c 5sc(c2 - 52) -IOse3

r-·w,eeee s· S2 C2 c·

s = sin(O); C = cos(O).

The coefficients ~m and am in eqn (21) are tabulated below:

m

1
2
3
4
5

4.7300408
7.8532046

10.9956078
14.1371655
17.2787596

0.982502216
1.000777311
0.999966540
1.00000145
0.99999937

For m > 5: 13m ~ (2m - 1)'lT/2;
am ~ 1.0.


